
A GENETIC ALGORITHM FOR EFFICIENT VIDEO
CONTENT REPRESENTATION

A.D. Doulamis, Y.S. Avrithis, N.D. Doulamis and S.D. Kollias
Department of Electrical and Computer Engineering
National Technical University of Athens
Email: adoulam@image.ntua.gr

1. Introduction
The rapid development of video and multimedia applications has enabled users to
handle large amounts of visual information. At the same time, new requirements have
emerged for more intelligent access to such databases, i.e., content-based indexing,
retrieval and video browsing. The traditional text-based approach to accessing image or
video databases has the drawback that it is difficult to characterize the rich content of
images or video based only on text information [1]. For this reason, a new
standardization phase is currently in progress by the Moving Picture Expert Group
(MPEG) in order to develop an integrated framework for a multimedia content
description interface (MPEG-7).

Many techniques have been developed in this research area and many image/video
retrieval systems have been built. The active research effort has been reflected in many
special issues of leading journals dedicated to this topic [2], [3]. Some of these
approaches are now in the first stage of commercial exploitation, such as the
VisualSEEK and QBIC [4] prototypes. Color image retrieval has been examined in [5]
based on a hidden Markov model, and extraction of detailed image regions for indexing
and retrieval has been proposed in [6]. Object modeling and segmentation for indexing
in video databases has been reported in [7] while single frame extraction based on the
frame properties has been proposed in [8] to perform the queries. A new progressive
resolution motion indexing has been presented in [9] using 3-D wavelet decomposition
of video sequences as well as rigid polygonal shapes. Finally, an approach for automatic
video segmentation and content-based retrieval based on a temporally windowed
principal component analysis of a sub-sampled version of a video sequence has been
reported in [10].

However, these systems cannot be easily extended to video databases since it is
practically impossible to perform queries on every video frame. Furthermore, due to the
strong temporal correlation of video frames, examination of each frame is very



inefficient. To make retrieval in video databases more efficient, a pre-indexing stage
should be introduced which extracts a small but meaningful information of the video
content. Then, video queries can be directly applied to this small amount of information.
In this chapter, we propose an efficient video content representation using optimal
extraction of a limited number of key frames and scenes of video sequences. This
approach not only provides a more efficient way for video indexing, but also results in
reducing storage requirements and thus permits easy management of multimedia
databases. Then, video queries are performed on this small but meaningful collection of
frames instead of the entire video stream.

The first stage of the proposed algorithm includes a scene cut detection mechanism.
Then, video processing and image analysis techniques are applied to each video frame
for extracting color, motion and texture information. Color information is extracted by
applying a hierarchical color segmentation algorithm to each video frame.
Consequently, apart from the color histogram of each frame additional features are
collected concerning the number of color segments, and their location, size and shape.
Motion information is also extracted in a similar way by using a motion estimation and
segmentation algorithm.

All the above features are gathered in order to form a multidimensional feature
vector for each video frame. The representation of each frame by a feature vector, apart
from reducing storage requirements, transforms the image domain to another domain,
more efficient for key frame selection. Since similar frames can be characterized by
different color or motion segments, due to imperfections of the segmentation
algorithms, a fuzzy representation of feature vectors is adopted in order to provide more
robust searching capabilities. In particular, we classify color as well as motion and
texture segments into pre-determined classes forming a multidimensional histogram and
a degree of membership is allocated to each category so that the possibility of erroneous
comparisons is eliminated.

Optimal selection of representative scenes is performed by minimizing a distortion
criterion. This is accomplished by clustering similar scenes and selecting a limited
number of cluster representatives. The generalized Lloyd-Max algorithm has been used
for this purpose as described in [11]. The next step is to select the key frames within
each one of the selected scenes. This is achieved by minimizing a correlation criterion,
so that the selected frames are not similar to each other. This approach gives better
results than the one proposed in [12], where frame selection was based on detection of
feature vectors that reside in extreme locations of the feature vector trajectory. Since
similar frames may be characterized by different segments, the latter approach was
rather sensitive and heavily dependent on the adopted segmentation algorithm.

Unfortunately, the complexity of an exhaustive search for the minimum value of a
correlation measure is such that a direct implementation would be practically unfeasible.
For this reason, a genetic algorithm approach [13] is adopted in this chapter. Possible
solutions of the optimization problem, i.e., sets of frames, are represented by
chromosomes whose genetic material consists of frame numbers (indices). An initial
population of chromosomes is then generated by selecting sets of frames whose feature
vectors reside in extreme locations of the feature vector trajectory. The objective
function used to estimate the fitness values of all chromosomes, is defined as the sum of
squares of cross-correlations between all combinations of feature vectors, for all frame



numbers that belong to the genetic material of the respective chromosome. Following a
proportionate scheme for parent selection, a set of new chromosomes (offspring) is
produced by mating the parent chromosomes and applying uniform crossover and
mutation operations.

This chapter is organized as follows: Section 2 briefly describes the feature
extraction module, including the scene cut detection as well as the color / motion
segmentation procedure. Section 3 refers to the feature vector formulation, while in
sections 4 and 5 the scene and frame selection mechanisms are presented respectively.
Experimental results illustrating the performance of the proposed scheme are presented
in section 6, while conclusions are given in section 7 of this chapter.

2. Feature Extraction
The feature extraction procedure is performed in a way similar to [14] and is briefly
discussed in the sequel.

Scene Cut Detection. The first stage of the feature extraction procedure includes a
scene cut detection technique, in order to locate the main shots of a video stream. Since
visual content is typically stored in MPEG compressed format, it is preferable to
perform the feature extraction directly in the compressed domain. As a result, in our
approach scene cut detection is achieved by computing the sum of the block motion
estimation error over each frame and detect frames for which this sum exceeds a certain
threshold [14].

Color / Motion Segmentation. Color and motion segmentation provides a powerful
representation of each video frame, more oriented to the human perception. In general,
the number, size and location of objects as well as their color, motion, or texture
characteristics give more meaningful information for an image than raw pixels. Thus, a
color and motion segmentation technique is applied to each video frame. Block
resolution has been adopted both for reducing the required computational time and for
exploiting information that already exists in the MPEG coding standard. To avoid
oversegmentation problems we have proposed a hierarchical block-based segmentation
algorithm described in [14]. Moreover, object tracking is supported by taking into
account motion compensated segmentation results of previous frames [12]. Apart from
information provided by color or motion segmentation other features are included in the
feature vector, such as information provided by color and motion histograms or
appropriate ac coefficients of the DCT transform.

3. Feature Vector Formulation
All of the above frame features are gathered in order to form a multidimensional feature
vector which is used for collection of information content for each frame. Properties of
color or motion segments cannot be used directly as elements of feature vectors, since
its size will differ between frames. To overcome this problem, we classify color as well
as motion segments into pre-determined classes, forming a multidimensional histogram.
To eliminate the possibility of classifying two similar segments to different classes,
causing erroneous comparisons, a degree of membership is allocated to each class,
resulting in a fuzzy classification [15].

This kind of classification is illustrated in Figure 1 for the simple case of a single
one-dimensional feature x, normalized between 0 and 1 (e.g., normalized segment size).



A fuzzy partition of the feature space [0,1] into Q=5 classes is defined by using Q
membership functions ]1,0[)( ∈xn� , Qn ,,1�= . Triangular membership functions

with 50% overlap between successive partitions are used in Figure 1, but their exact
shape and overlap percentage can be greatly varied. Using this partition scheme for
feature x, a fuzzy histogram can be constructed from a large number of feature samples,
corresponding to different image segments. Moreover, this histogram can be meaningful
even when the total number of segments is small, since similar features always produce
similar classification results.
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Figure 1: One-dimensional fuzzy classification.

In the more general case of multiple segment properties (such as size, color and
motion), multidimensional classification is applied. Let P(Si), c(Si), v(Si), and l(Si)
denote the size, color, motion vector and location of the i-th segment Si. The L×1 vector
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then fully describes the properties of segment Si using a total of L segment features.
Since the length of vectors c, v and l is 3×1, 2×1 and 2×1 respectively, L will be equal to
8 in the above formulation. However, it can be greater if we also include segment shape
or texture information. Each feature space is then partitioned into Q regions and a

partition index },,2,1{ Qnj �∈  is assigned to the j-th feature element, )(i
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where K is the total number of segments of the frame. The above summation actually
corresponds to a multidimensional histogram, using segments Si (or equivalently
features x(i) ) as samples. Finally, the frame feature vector is formed by gathering values
F(n) for all categories n, i.e., for all combinations of indices },,2,1{,,1 Qnn L �� ∈ ,

resulting in a total of M=QL feature elements.



Global frame characteristics, obtained through global frame analysis, are also
included in the feature vector. In particular, the color histogram of each frame is
calculated using YUV coordinates for color description and the average texture
complexity is estimated using the high frequency DCT coefficients of each block
derived from the MPEG stream. Finally, a scene feature vector, which characterizes a
whole scene, is constructed by calculating the mean value of feature vectors over the
whole duration of a scene.

4. Scene Selection.
The first stage for an efficient video content representation is the extraction of a small
but sufficient number of scenes that satisfactorily represent the video content. This is
accomplished by clustering similar scene feature vectors (that is, vectors whose distance
in the feature space is small) and selecting only a limited number of cluster
representatives. For example, in TV news recordings, consecutive scenes of the same
person would reduce to just one. The extraction of the most representative scenes can be
used in applications such as automatic generation of low resolution video clip previews.

Let M
i ℜ∈s , SNi ,...,2,1=  be the scene feature vector for the i-th scene, where SN

is the total number of scenes. Then },,2,1,{ Si NiS �== s  is the set of all scene feature

vectors. Let also SK  be the number of scenes to be selected and ic , SKi ,...,2,1=  the

feature vectors which best represent those scenes. For each ic , an influence set is

formed which contains all scene feature vectors S∈s  which are closer to ic :
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where )(⋅d  denotes the distance between two vectors. A common choice for )(⋅d  is the

Euclidean norm. In effect, the set of all iZ  defines a partition of S into clusters of

similar scenes which are represented by the feature vectors ic . Then the average
distortion, defined as
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is a performance measure of the representation of scene feature vectors by the cluster
centers ci . The optimal vectors �ci  are thus calculated by minimizing D:
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Direct minimization of the previous equation is a tedious task since the unknown
parameters are involved both in distances d( )⋅  and influence zones. For this reason,
minimization is performed in an iterative way using the generalized Lloyd or K-means
algorithm [16]. Starting from arbitrary initial values ci ( )0 , i K S= 1 2, , ... , , the new

centers are calculated through the following equations for n ≥ 0 :
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where ci n( )  denotes the i-th center at the n-th iteration, and Z ni ( )  its influence set. The

center of Z ni ( )  is estimated by the function
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where Z ni ( )  is the cardinality of Z ni ( ) . The algorithm converges to the solution

(� , � ,...,� )c c c1 2 KS
 after a small number of iterations. Finally, the KS  most representative

scenes are extracted as the ones whose feature vectors are closest to (� , � ,...,� )c c c1 2 KS
:
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5. Genetic Algorithm for Frame Selection.
After extracting the most representative scenes, the next step is to select the key frames
within each one of the selected scenes. This is achieved by minimizing a correlation
criterion, so that the selected frames are not similar to each other. In particular, the key
frames are selected as the ones with the minimum correlation among them. The
selection could also be performed using the previous optimization technique. However,
that approach does not exploit the temporal relation of feature vectors, which is
significant for the frame selection procedure, as it is described in the sequel.

Let us denote by },,1{, F
M

i NVi �=∈ℜ∈f  the feature vector of the i-th frame,

where FN  is the total number of frames of a scene, and suppose that the FK  most

characteristic ones should be selected. The correlation coefficient of the feature vectors
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N
i NF /1∑ == fm  is the average feature vector of the scene and
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feature vectors, we first define the index vector F
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is the subset of  FKV  which contains all sorted index vectors x . Thus, each index
vector ),,( 1 FKxx �=x  corresponds to a set of frame numbers. The correlation

measure of the feature vectors 
FKi xxi ,,, 1 �=f  is then defined as
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Based on the above definitions, it is clear that searching for a set of FK  minimally

correlated feature vectors is equivalent to searching for an index vector x  that
minimizes )(xR . Searching is limited in the subset W, since index vectors are used in

order to construct sets of feature vectors, therefore any permutations of the elements of



x  will result in the same sets. The set of the FK  least correlated feature vectors,

corresponding to the FK  most characteristic frames, is thus represented by
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Unfortunately, the complexity of an exhaustive search for the minimum value of
)(xR  is such that a direct implementation would be practically unfeasible, since the

multidimensional space W includes all possible sets (combinations) of frames. A
dramatic reduction in complexity is achieved, however, through logarithmic search,
which has been introduced in [11] and is performed in a way similar to the search for
block motion estimation in video sequences. The algorithm is restricted to the special

case G
FN 2=  and its implementation includes the definition of an initial step size

4/2 2
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the middle point ~ ( , , )x0 = µ µ� , where 12 1 −= −Gµ . Successive index vector estimates

are then obtained by the recursive equations
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where the neighborhood ),( SN x of x  is a small set of index vectors whose distance

from x  is S. The final result 2ˆ −= Gxx  is obtained by applying the above recursion for

2,,1 −= Gn �  (until Sn = 1). The algorithm, whose implementation details are fully

described in [11], provides a very fast convergence to a sub-optimal solution. However,
since the search procedure is by definition confined to a very small, pre-defined subset
of the search space W, there is always a significant possibility of converging to a local
minimum of )(xR , resulting in poor performance.

For this reason, a genetic algorithm (GA) [13] approach is adopted in this chapter.
This approach seems to be very efficient for the particular optimization problem, given
the size and dimensionality of the search space and the multimodal nature of the
objective function. Possible solutions of the optimization problem, i.e., sets of frames,
are represented by chromosomes whose genetic material consists of frame numbers
(indices). Chromosomes are thus represented by index vectors

F

F

K
K Vxx ∈= ),,( 1�x following an integer number encoding scheme, that is, using

integer numbers for the representation of genes Fi KiVx ,,1, �=∈ .

An initial population of P chromosomes, ),,()0( 1 PxxX �=  is then generated by

selecting sets of frames whose feature vectors reside in extreme locations of the feature
vector trajectory. This selection is accomplished by locating points where the magnitude
of the second-order derivative of feature vector trajectory is locally maximized.
Traditionally, initial populations are randomly generated, but the above approach
exploits the temporal relation of feature vectors and increases the possibility of locating
sets of feature vectors with small correlation within the first few GA cycles. Note that
this approach has been used directly for key frame selection in [12], [14]. The initial
population X(0) is used for the creation of new generation populations X(n), n>0. The
creation of X(n) at generation (or GA cycle) n is performed of by applying a set of



operations on population X(n-1), described below. This procedure is repeated in an
iterative way, until X(n) converges to an optimal solution of the problem.

The correlation measure )(xR  is used as an objective function to estimate the

performance of all chromosomes Pii ,,1, �=x  in a given population. However, a

fitness function is used to map objective values to fitness values, following a linear
normalization scheme. In particular, chromosomes ix  are ranked in ascending order of

)( iR x , since the objective function is to be minimized. Let },,1{)( Pr i �∈x  be the

rank of chromosome Pii ,,1, �=x . Defining an arbitrary fitness value BF  for the best

chromosome, the fitness of the i-th chromosome is given by the linear function

PiDrFF iBi ,,1,]1)([)( �=−−= xx (14)

where D is a decrement rate. Thus, the average objective value of the population is
mapped into the average fitness [17]. After fitness values, PiF i ,,1),( �=x , have been

calculated for all members of the current population, parent selection is then applied so
that a fitter chromosome gives a higher number of offspring and thus has a higher
chance of survival in the next generation. A proportionate scheme, implemented by the
roulette wheel selection procedure [18], is used for parent selection, ensuring that each
chromosome has a growth rate proportional to its fitness value.

A set of new chromosomes (offspring) is then produced by mating the selected
parent chromosomes and applying a crossover operator. The genetic material of the
parents is combined in a random way in order to produce the genetic material of the
offspring. Figure 2 depicts an example of the crossover operator with four crossover
points used for exchanging genes. A generalized uniform crossover scheme is employed
in the context of this chapter, by considering each parent gene to be a potential
crossover point. Mutation is then applied to the newly created chromosomes,
introducing random gene variations that are useful for restoring lost genetic material, or
for producing new material that corresponds to new search areas. In particular, each
offspring gene ix  is replaced by randomly generated one },,1{ Fi NVx �=∈′ , if a

probability test is passed. A small mutation probability mp  ensures that only a small

gene proportion is altered in each generation.
Crossover  Points

Offspr ingParents

Figure 2: Example of the crossover operator.

Once new chromosomes have been generated for a given population 0),( ≥nnX ,

the next generation population, )1( +nX , is formed by inserting those new

chromosomes into )(nX  and deleting an appropriate number of older chromosomes, so

that each population consists of P members. The exact number, C, of old chromosomes
to be replaced by new ones defines the replacement strategy of the GA and greatly



affects its convergence rate. All of the above description refers to simple GA cycle.
Several cycles need to take place, that is, several generations 0),( >nnX  need to be

produced until the population converges to an optimal solution. For this reason, the
procedures of fitness evaluation, parent selection, crossover and mutation are repeated
until a termination criterion is reached. Usually the GA terminates when the best
chromosome fitness remains constant for a large number of generations, indicating that
further optimization is unlikely.

The above algorithm, as well as the logarithmic search algorithm, is based on the
assumption that frames which are close to each other (in time) should have similar
properties, and therefore indices which are close to each other (in W) should have
similar correlation measures. However, the technique performs equally well even in the
case of random feature vectors, as shown by experiments.

6. Experimental Results
The proposed algorithms were integrated into a system that was tested using several
video sequences from video databases. The results obtained from a TV news reporting
sequence of total duration 10 minutes (about 15000 frames) are illustrated in the
following Figures. The sequence was first partitioned in 52 scenes, using the scene cut
detection procedure described in Section 2. Then, the frame and scene feature vectors
were extracted using the aforementioned methodology. In particular, an average feature
vector was formulated, for each scene, based on the multidimensional feature vectors of
the frames composed the scene. The generalized Lloyd algorithm was used for the
selection of the most representative scenes.
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Figure 3. Probability density function of the correlation measure R( )x . The vertical dashed line
shows the minimum value located by the logarithmic search algorithm, while the dotted line the

one located by the genetic algorithm.



The frame selection procedure was then applied to the most representative scenes for
extraction of the key video frames. Two methods have been used for selection of KF=6
key frames out of a total of 293 frames (about 12 sec) of a specific scene: the
logarithmic search procedure described in [11], and the genetic algorithm proposed in
this chapter. Figure 3 indicates the probability density function of the correlation
measure R( )x . This function is actually estimated by a histogram obtained through
Monte-Carlo simulation, using a large number of random sample vectors

F

F

K
K Vxx ∈= ),,( 1�x . In the above Figure, the minimum values obtained by the

logarithmic and the genetic search algorithms are also depicted (dashed and dotted line
respectively). It is firstly observed that both algorithms return minimum values very
close to the actual global minimum of R( )x . This, of course, is an approximate result,
since the actual minimum value cannot be calculated. Secondly, it is clearly shown that
the genetic algorithm provides more accurate results since the logarithmic search
procedure can be “trapped” in a local minimum.
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Figure 4: Genetic algorithm convergence: correlation measureR( )x (objective function) versus
the GA cycle (generation).

Figure 4 shows the minimum value, over the whole population, of the objective
function (or correlation measureR( )x ) versus the cycle (or generation) of the genetic
algorithm. As expected, R( )x decreases as the GA cycle increases, until it reaches a
minimum at generation 85. Since in the specific experiment half chromosomes are
replaced by new ones at each generation (P=80 and C=P/2=40 have been used), there
are cases where all generated offspring have lower fitness than their parents. In these
cases the value of the R( )x  remains at the same level, hence the “stepwise” appearance
of the curve in the above Figure. Note that the step “width” increases with the GA cycle,
since it is directly related to the probability of further optimization.



  

  
Figure 5. Six selected key frames of a scene after applying the genetic algorithm.

The six selected video frames of the given scene are shown in the Figure 5.
Although a very small percentage of frames is retained, it is obvious that one can
perceive the content of the scene by just examining the 6 selected frames. Consequently,
it is clear that the selected frames give a meaningful representation of the content of the
12-sec video sequence.

7. Conclusions
In this chapter, an efficient video content representation system is presented which
permits automatic extraction of a limited number of key frames or scenes that provide
sufficient information about the content of a video sequence. In particular, a small but
meaningful amount of information is extracted from a video sequence, which is capable
of providing a representation suitable for visualization, browsing and content-based
retrieval in video databases. Queries are then performed in a more efficient way since
only a small number of representative frames involved in the process. In our approach a
genetic search algorithm have been adopted for the key frame selection.

The GA approach seems to be very efficient for the particular optimization problem,
given the size and dimensionality of the search space and the multimodal nature of the
objective function. This estimation is supported by experimental results, demonstrating
fast convergence to optimal solutions. The performance of the technique could be
further improved by considering parallelization methods such as global, migration or
diffusion [19]. Several other improvements are also possible for the proposed system,
such as integration of color and motion segmentation results, more robust object
tracking algorithm, more intelligent object extraction (e.g., extraction of human faces
[6]), and interweaving of audio and video information. These topics are currently under
investigation.
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